LaTeX to PDF and MathJax: Example 2

Emma Cliffe

2017

Contents

Us	Using this document	
1	The scalar product	2
	1.1 Vectors in cartesian form	3
2	Using Matlab	5

List of Figures

1	Two vectors with angle between them	2
2	A triangle is formed by two vectors and their difference.	4

Using this document

This is a second example of a document compiled from LaTEX into multiple formats.

- Standard print PDF
- Clearer print PDF
- Accessible web format
- Accessible Word document

The outputs can be used to test setups and as a second example for students to try out.

1 The scalar product

Consider two vectors a and b drawn so their tails are at the same point.

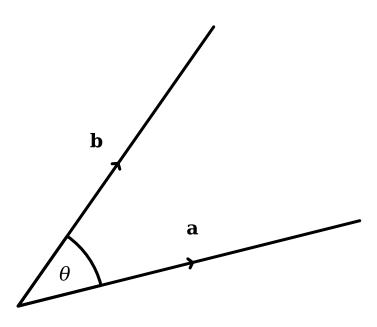


Figure 1: Two vectors with angle between them.

We define the scalar product of $\, {\bf a} \,$ and $\, {\bf b} \,$ as follows.

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$

where

- $\bullet \ |\mathbf{a}| \text{ is the modulus of } \mathbf{a}\,,$
- $\bullet \ |\mathbf{b}|$ is the modulus of $\, \mathbf{b}$, and
- θ is the angle between \mathbf{a} and \mathbf{b} .

Remark 1.2.

It is important to use the dot symbol for the scalar product (also called the dot product). You must not use a $\times\,$ symbol as this denotes the vector product which is defined differently.

Example 1.3.

Let

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

The angle between these vectors is $\theta = 45^{\circ}$. Then $|\mathbf{a}| = \sqrt{8}$ and $|\mathbf{b}| = 4$. So,

$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 2\\2 \end{pmatrix} \cdot \begin{pmatrix} 4\\0 \end{pmatrix} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= \sqrt{8} \times 4 \times \cos 45^{\circ}$$
$$= 4\sqrt{8} \times \frac{1}{\sqrt{2}} = 4\frac{\sqrt{8}}{\sqrt{2}} = 4\sqrt{4} = 8.$$

Note that the result is a scalar, not a vector.

1.1 Vectors in cartesian form

When vectors are given in cartesian form there is an alternative formula for calculating the scalar product.

Proposition 1.4.

If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j}$ then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

Proof. Consider the vector $\mathbf{b} - \mathbf{a} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$. The modulus of this is $|\mathbf{b} - \mathbf{a}| = \sqrt{(b_1 - a_2)^2 + (b_2 - a_2)^2}.$

Note from figure 2 that the vectors $\, {\bf a} \, , \, {\bf b} \,$ and $\, {\bf b} - {\bf a} \,$ form a triangle:

Let θ denote the angle between a and b. Then, the cosine rule yields:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta.$$
(1)

Substituting the definition of the scalar product of \mathbf{a} and \mathbf{b} into equation 1 gives:

$$|\mathbf{b} - \mathbf{a}|^{2} = |\mathbf{a}|^{2} + |\mathbf{b}|^{2} - 2(\mathbf{a} \cdot \mathbf{b})$$

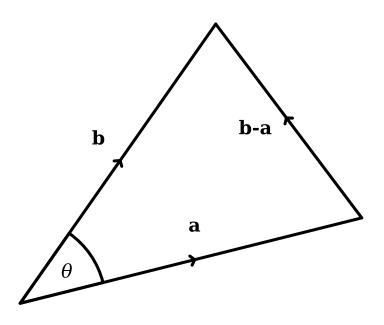


Figure 2: A triangle is formed by two vectors and their difference.

Rearranging:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} \left(|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{b} - \mathbf{a}|^2 \right).$$

Writing this in terms of components produces:

$$\begin{aligned} (\mathbf{a} \cdot \mathbf{b}) &= \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - (b_1 - a_1)^2 - (b_2 - a_2)^2 \right) \\ &= \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - b_1^2 + 2b_1a_1 - a_1^2 - b_2^2 + 2b_2a_2 - a_2^2 \right) \\ &= \frac{1}{2} \left(2b_1a_1 + 2b_2a_2 \right) \\ &= a_1b_1 + a_2b_2 \end{aligned}$$

as required.

Example 1.5.

Consider again the vectors

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

Calculating the scalar product using the components:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 = 2 \times 4 + 2 \times 0 = 8.$$

Note that if we are given vectors in this form, the scalar product may be used to calculate the angle between them. Since $\mathbf{a} \cdot \mathbf{b} = 8$ and we have:

$$|\mathbf{a}| = \sqrt{8}$$
$$|\mathbf{b}| = 4.$$

Hence,

$$8 = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= 4\sqrt{8} \cos \theta.$$

Rearranging:

$$\theta = \cos^{-1}\left(\frac{8}{4\sqrt{8}}\right) = 45^\circ.$$

2 Using Matlab

Two calculate the scalar product in Matlab the dot function is used.

Create two vectors:

Calculate the scalar product:

> C = dot(A,B)

C = 8