LaTeX to PDF and MathJax: Example 2

Emma Cliffe
2017

Contents

Using this document 1
1 The scalar product 2
1.1 Vectors in cartesian form 3
2 Using Matlab 4
List of Figures
1 Two vectors with angle between them. 2
$2 \quad$ A triangle is formed by two vectors and their difference. 3

Using this document

This is a second example of a document compiled from $\mathrm{ETEX}_{\mathrm{E}}$ into multiple formats.

- Standard print PDF
- Clearer print PDF
- Accessible web format
- Accessible Word document

The outputs can be used to test setups and as a second example for students to try out.

1 The scalar product

Consider two vectors \mathbf{a} and \mathbf{b} drawn so their tails are at the same point.

Figure 1: Two vectors with angle between them.
We define the scalar product of \mathbf{a} and \mathbf{b} as follows.
Definition 1.1 (Scalar product). The scalar product of \mathbf{a} and \mathbf{b} is

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

where

- $|\mathbf{a}|$ is the modulus of \mathbf{a},
- $|\mathbf{b}|$ is the modulus of \mathbf{b}, and
- θ is the angle between \mathbf{a} and \mathbf{b}.

Remark 1.2. It is important to use the dot symbol for the scalar product (also called the dot product). You must not use a \times symbol as this denotes the vector product which is defined differently.
Example 1.3. Let

$$
\mathbf{a}=\binom{2}{2} \quad \text { and } \quad \mathbf{b}=\binom{4}{0} .
$$

The angle between these vectors is $\theta=45^{\circ}$. Then $|\mathbf{a}|=\sqrt{8}$ and $|\mathbf{b}|=4$. So,

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}=\binom{2}{2} \cdot\binom{4}{0} & =|\mathbf{a}||\mathbf{b}| \cos \theta \\
& =\sqrt{8} \times 4 \times \cos 45^{\circ} \\
& =4 \sqrt{8} \times \frac{1}{\sqrt{2}}=4 \frac{\sqrt{8}}{\sqrt{2}}=4 \sqrt{4}=8 .
\end{aligned}
$$

Note that the result is a scalar, not a vector.

1.1 Vectors in cartesian form

When vectors are given in cartesian form there is an alternative formula for calculating the scalar product.

Proposition 1.4. If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$ then

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2} .
$$

Proof. Consider the vector $\mathbf{b}-\mathbf{a}=\binom{b_{1}-a_{1}}{b_{2}-a_{2}}$. The modulus of this is

$$
|\mathbf{b}-\mathbf{a}|=\sqrt{\left(b_{1}-a_{2}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}} .
$$

Note from figure 2 that the vectors \mathbf{a}, \mathbf{b} and $\mathbf{b}-\mathbf{a}$ form a triangle:

Figure 2: A triangle is formed by two vectors and their difference.
Let θ denote the angle between \mathbf{a} and \mathbf{b}. Then, the cosine rule yields:

$$
\begin{equation*}
|\mathbf{b}-\mathbf{a}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta . \tag{1}
\end{equation*}
$$

Substituting the definition of the scalar product of \mathbf{a} and \mathbf{b} into equation 1 gives:

$$
|\mathbf{b}-\mathbf{a}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2(\mathbf{a} \cdot \mathbf{b}) .
$$

Rearranging:

$$
(\mathbf{a} \cdot \mathbf{b})=\frac{1}{2}\left(|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-|\mathbf{b}-\mathbf{a}|^{2}\right) .
$$

Writing this in terms of components produces:

$$
\begin{aligned}
(\mathbf{a} \cdot \mathbf{b}) & =\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-\left(b_{1}-a_{1}\right)^{2}-\left(b_{2}-a_{2}\right)^{2}\right) \\
& =\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-b_{1}^{2}+2 b_{1} a_{1}-a_{1}^{2}-b_{2}^{2}+2 b_{2} a_{2}-a_{2}^{2}\right) \\
& =\frac{1}{2}\left(2 b_{1} a_{1}+2 b_{2} a_{2}\right) \\
& =a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

as required.

Example 1.5. Consider again the vectors

$$
\mathbf{a}=\binom{2}{2} \quad \text { and } \quad \mathbf{b}=\binom{4}{0}
$$

Calculating the scalar product using the components:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}=2 \times 4+2 \times 0=8
$$

Note that if we are given vectors in this form, the scalar product may be used to calculate the angle between them. Since $\mathbf{a} \cdot \mathbf{b}=8$ and we have:

$$
\begin{aligned}
|\mathbf{a}| & =\sqrt{8} \\
|\mathbf{b}| & =4 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
8=\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta \\
& =4 \sqrt{8} \cos \theta
\end{aligned}
$$

Rearranging:

$$
\theta=\cos ^{-1}\left(\frac{8}{4 \sqrt{8}}\right)=45^{\circ}
$$

2 Using Matlab

Two calculate the scalar product in Matlab the dot function is used.
Create two vectors:
$>A=\left[\begin{array}{lll}4 & -1 & 2\end{array}\right] ;$
$>\mathrm{B}=\left[\begin{array}{lll}2 & -2 & -1\end{array}\right] ;$
Calculate the scalar product:
$>C=\operatorname{dot}(A, B)$
$C=8$

